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Simulation of viscous water column collapse using
adapting hierarchical grids
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SUMMARY

An adaptive hierarchical grid-based method for predicting complex free surface �ows is used to simulate
collapse of a water column. Adapting quadtree grids are combined with a high-resolution interface-
capturing approach and pressure-based coupling of the Navier–Stokes equations. The Navier–Stokes �ow
solution scheme is veri�ed for simulation of �ow in a lid-driven cavity at Re=1000. Two approaches to
the coupling of the Navier–Stokes equations are investigated as are alternative face velocity and hanging
node interpolations. Collapse of a water column as well as collapse of a water column and its subsequent
interaction with an obstacle are simulated. The calculations are made on uniform and adapting quadtree
grids, and the accuracy of the quadtree calculations is shown to be the same as those made on the
equivalent uniform grids. Results are in excellent agreement with experimental and other numerical data.
A sharp interface is maintained at the free surface. The new adapting quadtree-based method achieves a
considerable saving in the size of the computational grid and CPU time in comparison with calculations
made on equivalent uniform grids. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of free surface waves is an important problem in ocean engineering and naval
architecture. Signi�cant advances have been made towards understanding gravity waves
through the use of inviscid free surface �uid �ow models [1], in which the viscosity of
the �uid is ignored and the �uid motion considered to be irrotational and dominated by inertia.
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However, there are situations in which combined e�ect of the free surface and the �uid
viscosity is important, such as interaction of a free surface wave with a structure. The moving
air–water interface together with the nonlinear governing equations and boundary conditions
make modelling of a viscous �uid free surface �ow an extremely challenging problem. The
accuracy of the simulation depends on calculating the correct position of the moving air–water
interface, and this becomes especially di�cult when the wave overturns and merges with the
water surface or when the interface breaks up into spray.
There are two main methodologies for predicting the position of the moving free surface:

interface tracking and interface capturing. Interface-tracking methods include moving mesh
and front tracking [2], which have the disadvantage of being unable to predict beyond the
limit of wave-breaking and particle-tracking schemes [3, 4], which tend to be expensive and
not practical in three dimensions. On the other hand, interface-capturing methods can be used
for modelling large-scale deformations of the interface including wave breakup and merging.
They di�er from front tracking in that the solution is calculated in the combined air and water
�uid domains, with the �uid properties changing at the interface. The interface is then located
from the zero contour of a distance function in the case of level set [5] and from the volume
fraction �eld in the volume of �uid (VoF) method [6].
In this work, a VoF methodology together with the high-resolution CICSAM [7] interface

advection scheme is implemented on adapting quadtree grids [8]. A similar method, applied
to sloshing of a viscous liquid in a rectangular tank, is described by Wang et al. [9]. An
advantage of using adapting quadtree or octree grids is that they provide re�nement and
adaptation locally without requiring remeshing of the entire domain. Quadtree and octree
adapting grids were used by Jeong and Yang [10, 11] to simulate the early stages of collapse
of a water column using a �nite element formulation with square and cubic elements. Popinet
[12] describes use of quadtree and octree grids in an adaptive solver for the Euler equations
using a VoF approach, with multigrid iterations for the pressure equation.
Details of the VoF method and the quadtree grid adaptation, for a solution method based on

SIMPLE [13] (semi implicit method for pressure-linked equations) with power law
approximations for the convective terms, are described by Greaves [14]. Some early results
are included in Reference [14] of interface advection �ows and simulation of collapse of a
dam, which demonstrate that the same accuracy is achieved on an adapting quadtree grid as
on the equivalent uniform grid. For calculations involving a free surface, the method was
found to require a large band of re�nement around the interface and although there was a
saving in computer storage, the adaptive simulation was actually more expensive in CPU
time. The large CPU requirement was identi�ed to be due in part to slow convergence of
the SIMPLE Navier–Stokes equation solution procedure. Greaves [14] suggested that the size
of the re�nement band at the interface may be reduced by improving interpolation procedures
on the quadtree grids, and that by optimizing the solution procedure the overall CPU could
be reduced.
This paper presents an improved VoF methodology with dynamic quadtree adaptation,

which demonstrates savings in both computer storage and CPU time compared with equivalent
uniform grids and no loss of accuracy. First, the standard benchmark test of �ow in a driven
cavity is used to assess the accuracy of three di�erent face velocity interpolation schemes.
Next, an adapting quadtree grid is tested against the equivalent uniform grid for this case
with improved hanging node interpolations and a Gauss theorem approximation for calculating
gradients implemented on the quadtree grid. In order to speed up the solution, a PISO [15]
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(pressure implicit with splitting of operators) scheme is developed for quadtree grids and
applied to simulation of water column collapse. The results are compared with experimental
data and data previously calculated using a SIMPLE formulation [14]. The improvements
made in gradient calculations and interpolations on the quadtree grid are found to reduce the
required width of the high-resolution interface band. Finally, the impressive capability of the
method is demonstrated when applied to simulation of water column collapse followed by
interaction of the wave front with an obstacle. This case exhibits extremely complicated free
surface behaviour, including jet formation, wave breaking, bubble entrapment and break up
of the interface into spray.

2. SOLUTION OF THE NAVIER–STOKES EQUATIONS

Previous work by Greaves [14] used a SIMPLE-type solution procedure for the Navier–Stokes
equations, which was found to su�er from slow convergence especially on quadtree grids. In
an attempt to improve the e�ciency of the method, the alternative PISO scheme is investigated
here. In this Section, the main points of both the SIMPLE and PISO scheme are discussed
in order to identify the similarities and di�erences between the two methods.
Governing equations in primitive form for a two-dimensional incompressible �ow are the

mass conservation equation and the Navier–Stokes momentum conservation equations
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where x and y de�ne an orthogonal Cartesian co-ordinate system, u and v are the correspond-
ing velocity components, t the time, p the pressure, � the �uid density, g the gravitational
acceleration and � the �uid kinematic viscosity. For situations where the �uid viscosity is
variable, such as the multi�uid (air and water) �ow simulations considered here, extra di�u-
sion terms appear in the momentum equations: the last two terms in (2) and (3). According
to Ferziger and Peri�c [16], these terms are small compared to the other di�usion terms, and
so can be treated explicitly and included in the source term.
The governing equations are discretized on quadtree grids using �nite volumes with

collocated primitive variables (u, v and p are stored together at cell centres). The discrete
expression for the u-velocity is obtained by integrating the u-momentum equation over the
control volumes and multiplying by the cell area, VP= �x�y, to give

aPuP=
∑
anbunb + u0P�

VP
�t

− @p
@x
VP=H (u)− @p

@x
VP (4)

where the control volume (cell) in question is given the subscript P and the sum of the
neighbour contributions are denoted, nb. The superscript 0 indicates that the term is from the
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previous time step, �x, �y and �t are the horizontal and vertical dimensions of the cell and the
time step for the calculation and H (u)=

∑
anbunb + u0P�(VP=�t). The coe�cients, denoted a,

combine the momentum �uxes for convection and di�usion transport. The discrete equation
for the v component of velocity is similar. The continuity equation is discretized to give

Seue − Swuw + Snvn − Ssvs = 0 (5)

where the lower case subscripts denote face values of the velocity and Si is the area of face i.
In order to solve for the velocity and pressure �eld, it is necessary to couple and momentum

and continuity equations in some way. Various approaches are described in the literature. The
present work considers a SIMPLE [13] approach and a PISO [15] scheme.

2.1. SIMPLE

The SIMPLE approach is a pressure correction scheme, in which the velocity and pressure
variables are considered to comprise a guess, denoted with superscript ∗, and a correction,
denoted with superscript ′, e.g. u= u∗+ u′. Velocity correction formulae are derived from the
momentum equations and interpolated to cell faces using Rhie and Chow [17] treatment to
prevent checkerboard errors. These expressions are substituted into the discretized continuity
equation (5) to produce the pressure correction equation

aPp′
P= aEp

′
E + aWp

′
W + aNp

′
N + aSp

′
S + b (6)

The source term is the same as the discretized continuity equation but calculated using the
guessed velocity �eld, b= Seu∗

e − Swu∗
w + Snv

∗
n − Ss�xv∗s . The coe�cients, aj for cell j=P

and its neighbours j=E;W;N;S are given by Greaves and Borthwick [8]. The algorithm for
solution of the equations using the SIMPLE scheme is

1. solve momentum equations (2) and (3) using guessed pressure �eld,
2. solve pressure correction equation (6),
3. correct pressure and velocity variables.

This loop is repeated iteratively until a prescribed tolerance is achieved.

2.2. PISO

The PISO [15] algorithm was developed initially for non-iterative computation of unsteady
compressible �ows, but has since been successfully adapted for steady and unsteady incom-
pressible �ows.
The discretized u-momentum equation (4) is interpolated to cell faces using the Rhie

and Chow [17] treatment mentioned above. The face velocity expressions are then directly
substituted into the discretized continuity equation (5) to give an equation for pressure.

aPpP= aEpE + aWpW + aNpN + aSpS + b (7)

Here, aj are coe�cients for node j [7] and the source term is
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The algorithm for solution of the equations using the PISO scheme is

1. solve momentum equations (2) and (3) using guessed pressure �eld,
2. solve pressure equation (7),
3. calculate volumetric �uxes for use in momentum equation coe�cients,
4. correct velocity.

The loop from (2) to (4) is repeated iteratively until a prescribed tolerance is achieved before
proceeding to the next time step (1).

2.3. Face velocity interpolation

The Rhie and Chow [17] face velocity interpolations mentioned above are used to calculate
mass �uxes and in the pressure or pressure correction equations. Discretization of the convec-
tive terms in the momentum equations requires further face velocity interpolation, and three
di�erent approaches are considered in this work. The �rst is the power law scheme recom-
mended by Patanker [13] (also used in Reference [14]), the second is deferred correction
and the third is Jasak et al.’s [18] scheme. The deferred correction scheme, introduced by
Ferziger and Peri�c [16] for the calculation of convective �uxes, is a means of stabilizing
the calculation when a central di�erencing approximation may lead to instability. It combines
upwind di�erencing (UDS) with central di�erencing (CDS). The face velocity is expres-
sed as

uf= uUDSf + �(uCDSf − uUDSf )m−1 (8)

where the term in brackets is evaluated using values from the previous iteration while the
equations are solved using the UDS approximation. The blending factor, 06 �6 1, introduces
a linear weighting between the UDS and CDS approximations. If �=0 then pure upwinding
is used and if �=1 then pure CDS is used.
The centred di�erencing scheme proposed by Jasak et al. [18] calculates a blending factor

for each face. It is a high-resolution (HR scheme) convection–di�usion di�erencing scheme
based on the normalized variable diagram (NVD) discussed by Leonard [19]. The face value
of velocity is given by

uf=
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(9)

where k is a prescribed constant between 0 and 0.5, for which Jasak et al. [18] recommend
a value of 0.1. The subscripts D and A indicate donor and acceptor cells for a particular face
and are determined by the direction of the �ow. The decision factor, ũD, is de�ned as

ũD =1− uA − uD
2(∇u)D · d (10)
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where the vector d connects the computational point P with its neighbour N and (∇u)D
is calculated according to Gauss’s divergence theorem from

(∇u)D = 1
VD

n∑
f=1
Afuf (11)

3. THE VOLUME OF FLUID METHOD, VoF

Both the SIMPLE and PISO schemes are combined with a VoF method for simulating the
collapse of a water column. When considering the incompressible �ow of two immiscible
�uids, the divergence-free velocity �eld u(x; t) obeys

∇ · u=0 (12)

The location of the two �uids is speci�ed using a volume fraction function, C, with C=1
inside one �uid and C=0 in the other. Cells for which C lies between 0 and 1 contain the
interface. The �uid properties for a particular cell in the computational grid are calculated as
a volume average of the properties of the two �uids in question. Thus, the dynamic viscosity
and density are given by

�=C�1 + (1:0− C)�2 (13)

and

�=C�1 + (1:0− C)�2 (14)

The volume conservation of the �rst �uid can be expressed as

@C
@t
+∇ · (uC)=0 (15)

Solving this equation using UDS is stable but also is di�usive and may spread the interface
over many cells, whereas the downwind scheme is unstable but sharpens the interface. Various
VoF �uxing methods have been developed, most of which aim for a balance between the sta-
bility advantages of the upwind scheme and the front sharpening advantages of the downwind
scheme. Here, the CICSAM (compressive interface-capturing scheme for arbitrary meshes)
derived by Ubbink [7] is used. The cell face values of C, used in the discretized volume
fraction equation, are determined from a combination of the convection boundedness criteria
(CBC) value and the ultimate quickest (UQ) value, as described in detail by Greaves [14].

4. QUADTREE GRIDS

Quadtree grids and their application to the simulation of separated �ow are explained by
Greaves and Borthwick [8, 20] and their use in a high-resolution interface-capturing scheme
is described by Greaves [14, 21]. In Reference [14], it was found that a high-resolution band
around the free surface was necessary when simulating collapse of a dam to achieve the same
accuracy as the equivalent uniform grid. The necessary width of the band was found to be
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approximately 0.22 of the overall height of the domain. One reason for requiring such a band
is to keep hanging node errors, inherent in quadtree grids, away from the free surface where
accuracy is important for correct �uxing of the volume fraction. In this work, the required
width of the interface band has been signi�cantly reduced due in part to an improved hanging
node treatment in the gradient calculations. The treatment of hanging nodes together with the
criteria for adaptation of the quadtree grids is described here.

4.1. Hanging node treatment

Hanging nodes are inherent in quadtree grids and occur at the centre of a cell face where
cells of di�erent size meet. There are two main approaches to the treatment of hanging nodes:
to interpolate variables and treat as a regular grid, in which case the accuracy depends on the
accuracy of interpolations but �uxes are not necessarily conserved; or to use a conservative
approach using an irregular grid stencil.
For example, consider the pressure gradient terms occurring in the momentum equations

calculated for cell P in Figure 1

(∇p)P ≈ 1
VP

n∑
f=1
Afpf (16)

where subscript P represents the �nite volume cell in question, the �nite volume faces are
denoted with f and face values lie at the centre of the cell face. Af is the face area vector
and n is the number of faces of a control volume. In Reference [14], hanging node terms
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Figure 1. Hanging node treatment for �uxes.
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were calculated by an interpolated regular stencil approach of zero-order accuracy, in which
for the arrangement in Figure 1

pe =
1
2
pP +

1
2

(
pE1 + pE2 + pE3 + pE4

4

)

and

pw = 1
2pP +

1
2pW

In the present work, a �ux conserving approach of �rst-order accuracy is taken. Expanding
(16) for the x-direction

@p
@x
=Ae1pe1nxe1 + Ae2pe2nxe2 + Awpwnxw + Anpnnxn + Aspsnxs (17)

where nxf are the unit outward-pointing normal vectors for each face. The face values are
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Using the present scheme, the width of the band surrounding the interface and hence the total
number of cells required in the adapted grid is reduced.

4.2. Grid adaptation

An advantage of quadtree grids is that they can be readily adapted by the addition and
removal of panels throughout a time-dependent simulation. In this work, grid re�nement is
used to follow the movement of the interface, in a band surrounding the interface and at the
base of the domain. The grids are also adapted to provide high resolution in areas of high
vorticity in the �ow.
Remeshing of the grid operates by dividing a cell into four if it lies on the interface, or

is in a region of high vorticity; dere�nement takes place by removing four sibling cells and
replacing them with their parent if each of the four sibling cells lies away from the interface
and has low vorticity. Variables are interpolated onto new cells using bi-linear interpolation
from the neighbours of the divided cell. Alternatively, when four sibling cells are removed
and replaced with their parent, the variables assigned to the parent are the average of the four
sibling values. Interpolation and extrapolation of the volume fraction following adaptation of
the grid is described by Greaves [14] for advection test cases. However, for the free surface
�ow calculations, in which a re�nement band is used, the grid is always adapted away from
the air–water interface. This means that newly divided cells will have the same volume fraction
as their parent, and the parent of removed cells will have the same volume fraction as the
cells removed.
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5. RESULTS

5.1. Driven cavity

The lid-driven cavity is a well-known benchmark test, considered by Ferziger and Peri�c [16]
amongst others, and is used here to assess the accuracy of the adapting quadtree method for
solution of the Navier–Stokes equations. Both uniform and adapting quadtree grids are used
to simulate a square cavity �lled with a single viscous �uid driven in motion by a moving
lid. The Reynolds number, based on the lid velocity and width of the cavity, is 1000 and
no-slip boundary conditions are applied on all walls. The results are compared with �ne mesh
calculations made by Ghia et al. [22] using the vorticity stream function formulation. This
case, using the SIMPLE Navier–Stokes solution method, is used to compare the alternative
face velocity calculations: power law, deferred correction and Jasak et al. [18] scheme; and
use of adapting quadtree versus uniform grids.
First, grid convergence is considered in steady �ow simulations using the SIMPLE scheme,

together with deferred correction for the face velocities with the blending factor equal to
1.0 (equivalent to CDS), on uniform 32× 32; 64× 64 and 128× 128 grids. The horizontal
velocity along the vertical axis is plotted in Figure 2(a) and the vertical velocity along the
horizontal axis is plotted for comparison with Ghia et al.’s [22] results in Figure 2(b). It is
clear that results improve as the grid size is increased and the 128× 128 grid solution is very
close to Ghia et al.’s [22] solution.
Grid convergence may be assessed by calculating the grid convergence index (GCI) rec-

ommended by Roache [23]. The GCI relates the grid convergence error to that which would
be expected if grid doubling and a second-order accurate method were used. The GCI for the
�ne grid solution is expressed as

GCI[�ne grid]=3|�|=(rp − 1) (18)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) u

y 

0 0.1 0.2 0.3 0.4 0.5

v

−0.5

−0.5 −0.4 −0.3 −0.2 −0.1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

x 

    Ghia et al. 

…  32 x 32 grid

- -  64 x 64 grid 

- .  128 x 128 grid

    Ghia et al. 

…  32 x 32 grid

- -  64 x 64 grid 

- .  128 x 128 grid

Figure 2. Comparison of grid sizes: (a) u-velocity along vertical axis; and
(b) v-velocity along horizontal axis.
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where the error, �=(f2−f1)=f1 and fk is the solution on the coarse (k=2) and �ne (k=1)
grids. The grid re�nement ratio, r= h2=h1, where hk is the grid spacing and p is the order or
accuracy of the method. In situations where the grid is unstructured and hk varies through the
grid, such as the quadtrees used here, an e�ective re�nement ratio is de�ned, r=(N1=N2)1=D

using the number of elements in the coarse (N2) and �ne (N1) grids and the dimensionality
of the problem, D. The GCI values are calculated using the u-velocity solution at Ghia
et al.’s [22] data point positions vertically along the centreline of the cavity. The GCI for the
128× 128 grid to the 64× 64, GCI7766 =7:69% and for the 64× 64 grid to the 32× 32 grid,
GCI6655 =24:68%. Considering Ghia et al.’s [22] solution to be exact, the magnitude of the
�ne grid error is 2.16%.
Next, similar results are given in Figure 3 to compare the di�erent methods for calculating

the face velocities used in the discretized momentum equations. Here, a 64× 64 grid is used
for the calculation using the SIMPLE scheme for steady �ow together with each of the power
law scheme, deferred correction with the blending factor equal to 1.0 (equivalent to CDS)
and the Jasak et al. [18] scheme for face velocities. Use of the deferred correction scheme
clearly improves the accuracy over the power law scheme for a given size of grid. The Jasak
et al. [18] and deferred correction schemes show no noticeable di�erence.
The schemes are combined with an adaptive quadtree mesh generator of maximum division

level 6 and minimum level 3 and the driven cavity simulation repeated with the Jasak et al.
[18] scheme for face velocities. The size of the maximum division level cells is the same as for
the 64× 64 grid. The steady simulation is calculated for 50 time steps with grid adaptation at
each time step to provide re�nement in areas of high vorticity (as recommended by Jeong and
Yang [10, 11]). The adapted grid and velocity vectors are shown in Figure 4 and the velocity
components along the vertical and horizontal axes are plotted in Figure 5. The �nal adapted
grid contains 2169 cells and the results agree well with the results calculated on a regular grid
of the smallest cells, containing 4096 cells. Thus, use of quadtree grid adaptation leads to a
considerable reduction in grid size for a solution of comparable accuracy. The GCI for this
case, calculated according to Roache’s method for unstructured grids [23], GCI6663 =20:38%.
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Figure 3. Comparison of velocity interpolation scheme: (a) u-velocity along vertical axis; and
(b) v-velocity along horizontal axis.
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Figure 4. Adapted grid and velocity vectors.
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Figure 5. Adapted grid results: (a) u-velocity along vertical axis; and
(b) v-velocity along horizontal axis.

5.2. Collapse of a water column

The collapse of a water column has been investigated numerically by various researchers,
such as Ubbink [7], Jeong and Yang [10, 11], Qian et al. [24] and Andrillon and Alessan-
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drini [25]. Experimental data have been provided by Martin and Moyce [26] and Koshizuka
et al. [27]. Here, the quadtree adaptive high-resolution interface-capturing method is combined
with both SIMPLE and PISO Navier–Stokes �ow solvers for the unsteady �ow simulation,
and results are calculated on both uniform and quadtree grids. A unit square tank contains
a column of water 0:25 m wide and 0:5 m high held in place at t=0 s. The restraint is
then removed instantaneously and the resulting motion of the water column as it collapses
under gravity is simulated. The water has dynamic viscosity �1 = 1× 10−3 kg=m s and the air
�2 = 1:7× 10−5 kg=m s, the density of water is �1 = 1000 kg=m3 and for air �2 = 1 kg=m3, and
the acceleration due to gravity is taken to be g=9:8 m=s. Initially, the velocity everywhere
is zero; no-slip boundary conditions are applied on all walls; a free boundary condition for
velocity is applied at the top of the tank and pressure at the top of the tank is �xed at zero.
Results calculated using the SIMPLE scheme on uniform grids with time step dt=0:0001 s

are presented by Greaves [14]. The simulations are repeated here on a series of uniform grids
using the PISO formulation and found to be identical to those calculated using SIMPLE. The
collapse of the water column was also calculated on quadtree grids, which are re�ned at the
base of the tank and adapt during the solution to provide high resolution in a band surrounding
the free surface. Results calculated on a 7× 5 quadtree grid, with a re�nement band of 14
cells at the interface, and time step dt=0:0001 s, are �rst presented at non-dimensional time
steps, T =0; 1:617; 3:233; 4:850; 6:466 and 8.083, where T = t

√
g=a and a is the width of the

water column. In Figure 6 the reconstructed interface and adapted quadtree grids are plotted
together alongside the video images taken by Koshizuka et al. [27]. The results agree well
with those presented by Ubbink [7] and Qian et al. [24] and the video images [27]. The
time histories of the fronts are plotted in Figure 7 together with the results calculated on
the equivalent 128× 128 uniform grid. The non-dimensional height of the water column at
the left wall versus the non-dimensional time is shown in Figure 7(a). The predicted height
is the same for all three grids and agrees very well with the experimental data obtained by
Martin and Moyce [26], which is plotted alongside the numerical data. The non-dimensional
position of the leading edge is plotted against non-dimensional time in Figure 7(b). Martin
and Moyce [26] presented two di�erent sets of experimental data for this case. As observed by
Ubbink [7] and others [25], the discrepancy between the experimental and numerical results
here is possibly due to the di�culty in determining the exact location of the leading edge. A
thin layer, similar to a jet, shoots along the base of the tank, which is di�cult to capture. The
time histories for the quadtree calculation are identical to those calculated on the equivalent
uniform grid, thus showing that the same accuracy can be achieved on the quadtree grid as
on its corresponding equivalent uniform grid.
In Reference [14], it was found that a band of 6 cells was required for the 5× 3 quadtree

calculation. Here, we use a Gauss’ theorem approach to the pressure gradient terms and a
conservative �uxing scheme with improved interpolation at hanging nodes. These improve-
ments reduce the size of the required band around the interface to 2 cells, and thus reduce
the overall number of quadtree cells (for the 7× 5 grid, the re�nement band is reduced in
this way from 30 to 14 cells). Calculations on a 5× 3 quadtree grid were made to assess the
in�uence of the face velocity interpolation in the momentum equations on the accuracy of the
solution. Each of the power law scheme, deferred correction, with a blending factor of 0.5,
and the Jasak et al. [18] scheme were used and the results found to be identical.
Furthermore, use of adaptive quadtrees signi�cantly reduces the size of the calculation

grid and the CPU per time step without loss of accuracy (each simulation is run with time
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(a)

(b)

(c)

Figure 6. Interface and adapted 7× 5 quadtree grid: (a) T =0; (b) T =1:617; (c) T =3:233;
(d) T =4:850; (e) T =6:466; and (f) T =8:029.
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(d)

(e)

(f )

Figure 6. Continued.
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Figure 7. Comparison of adapted grid results with equivalent uniform grid: (a) height of water column;
and (b) position of leading edge.

Table I. Summary of grid size and CPU for simulation of water column collapse on uniform
and quadtree grids.

Grid Solution Typical no. of CPU per time Fine grid GCI
type type cells step (s) (%)

PISO Max Min
level level

Uniform Matrix 5 5 1024 0.17 GCI6655 = 1:22
Quadtree Matrix 5 3 367 0.05 GCI5553 = 1:47
Uniform Matrix 6 6 4096 1.34 GCI7766 = 0:03
Quadtree Matrix 6 4 1540 0.335 GCI6664 = 0:07
Uniform Matrix 7 7 16384 10.50
Quadtree Matrix 7 5 5563 2.99 GCI7775 = 0:01
Quadtree Iteration 7 5 5563 1.98

SIMPLE
Quadtree Matrix 6 4 1540 6.11

step dt=0:0001 s). Table I summarizes the grid size and CPU per time step for the dam
break calculation made on a series of quadtree and equivalent regular grids. All calculations
were made on a SUNFIRE 480R with 16 Gb RAM, four 900 MHz UltraSPARC-III+ CPU’s
and two 36 Gb (internal) HD’s running Solaris 8. The �ne grid GCI values are given in
Table I, calculated using (18) in which the error is based on the di�erence in water column
height predicted by each grid and averaged over the �rst 2000 time steps of the simulation.
Most of the simulations summarized in Table I use the PISO formulation with direct solution
of the simultaneous equations at each time step. This means that the matrix of size N 2 must
be stored. For the smaller grids, this works well and e�ciently, but as the grid size increases
the storage required becomes excessive and it is more e�cient to solve the simultaneous
equations by iteration. If point-by-point iteration is used, the CPU time required for the 7× 5
quadtree grid is 1:98 s per time step, a saving of approximately one third compared with
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matrix inversion. This saving is more signi�cant as the grid size is increased. If the SIMPLE
scheme is used, 6:11 s of CPU time per time step (dt=0:0001 s) are required for the 6× 4
quadtree grid calculation, approximately 18.5 times more than with PISO.

5.3. Collapse with an obstacle

A more extreme case, which has been considered by Andrillon and Alessandrini [25],
Koshizuka et al. [27] and Ubbink [7] amongst others, is when an obstacle is placed in

(a)

(b)

(c)

Figure 8. Interface calculated using 8× 5 adapting quadtree grid (LHS) and photographs from Koshizuka
et al. [25] (RHS) at non-dimensional time increments of 0.809: (a) T =0:0; (b) T =0:809; (c) T=1:617;

(d) T =2:426; (e) T =3:234; and (f) T =4:043.
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(d)

(e)

(f)

Figure 8. Continued.

the way of the wave front. The set-up is similar to that described in Section 5.2 with the
addition of a rectangular obstacle, 0.04-unit wide× 0:08-unit high placed on the bottom of a
tank, 1-unit wide× 0:6-unit high, with its leading edge at the centre of the tank. This case
was simulated using an 8× 5 adapting quadtree grid, having a re�ned interface band of 30
cells, with PISO and power law face velocity interpolation. Results showing the reconstructed
interface at non-dimensional time steps, T = t

√
g=a=0; 0:809; 1:617; 2:426; 3:233 and 4.043

are given in Figure 8 together with still photographs taken by Koshizuka et al. [27]. The
free surface motion is predicted well for the �rst few time steps considered, but is in less
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agreement at later times when the surface is highly contorted with considerable spray, breakup
and overturning.
At time T =0:809, the photograph shows spray at the obstacle, indicating that the jet that

rushes along the bottom of the tank has reached the obstacle. However, the predicted leading
edge has not yet reached the obstacle. At T =1:617, the tongue of water de�ected up from
the obstacle is satisfactorily predicted by the numerical scheme, although details of the spray
breakup are not resolved. Again, the predicted shape of the tongue of water is similar to that
of the experiment at T =2:426 as the tongue moves towards the right-hand wall. At T =3:233,
the tongue of water has made contact with the right-hand wall and begins to fall under gravity.
It traps air beneath it, which resists the downward fall of the water. The numerical solution
agrees well with the experiment at this point and the secondary tongue immediately above
the obstacle is resolved.
At T =4:043, a secondary tongue shoots into the trapped air space and towards the base

of the tank. This feature is captured by the numerical scheme, but the tongue is considerably
narrower and contains less water than in the photograph. The predicted interface at this point
shows a larger volume of trapped air and a smaller volume of water approaching the base of
the tank than in the experiment, although the shape of the primary tongue hitting the right-
hand wall, overturning above and running down to the base of the tank below the point of
impact is correctly reproduced. This simulation demonstrates the capability of the method to
deal with large-scale wave breaking, although it is likely that use of a �ner grid is necessary
to resolve better the �ner details of the �ow.

6. CONCLUSIONS

The adaptive quadtree volume of �uid method developed here shows great potential in the
simulation of complex free surface �ows. The new method uses CICSAM di�erencing for
advection of the interface together with either SIMPLE or PISO for solution of the Navier–
Stokes equations. Various approaches to the interpolation of face velocities used in the discrete
equations are investigated; the Jasak et al. [18] scheme is found to work best for the steady
�ow lid-driven cavity case considered and the power law scheme to perform most reliably
for unsteady simulation of water column collapse. For the water column collapse simulations,
the grid adapts at each time step to provide a band of re�nement of prescribed width around
the free surface. At hanging nodes, use of a conservative �uxing scheme with �rst-order ac-
curate interpolations and a Gauss’ theorem approach to the pressure gradient terms reduces the
necessary width of the band of re�nement around the interface, when compared with
Reference [14].
Results calculated for the lid-driven cavity and water column collapse are in excellent

agreement with experimental and other numerical data and a sharp interface is maintained
at the free surface. Use of adaptive quadtree grids achieves results of the same accuracy as
the corresponding equivalent uniform grid, but with considerable savings in grid size of a
factor of approximately 2.9, and in CPU of up to a factor of 4. When comparing the use of
SIMPLE and PISO for unsteady simulation of water column collapse, PISO is approximately
18.5 times faster than SIMPLE. The new scheme is found to work well for highly complex
free surface dynamics occurring when a falling water column interacts with an obstacle.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:693–711



VISCOUS WATER COLUMN COLLAPSE USING ADAPTING HIERARCHICAL GRIDS 711

ACKNOWLEDGEMENTS

The author is very grateful to the Royal Society for supporting this work. The author also gratefully
acknowledges several informative discussions with Ping Wang Jr.

REFERENCES

1. Wu GX, Ma QW, Eatock Taylor R. Numerical simulation of sloshing waves in a 3D tank based on a �nite
element method. Applied Ocean Research 2001; 20:337–355.

2. Hyman JM. Numerical methods for tracking interfaces. Physica 1984; 12D:396–407.
3. Monaghan JJ. Simulating free surface �ows with SPH. Journal of Computational Physics 1994; 65:179–214.
4. Lin H, Atluri SN. The meshless local Petrov–Galerkin (MLPG) method for solving incompressible Navier–
Stokes equations. Computer Modelling in Engineering and Sciences 2001; 2(2):117–142.

5. Causon DM. An e�cient front tracking algorithm for multi-component �uid calculations with biomedical
applications. Zeitschrift fur Angewandte Mathematik und Mechanik 1996; 76(S1):371–372.

6. Hirt CW, Nichols BD. Volume of �uid (VOF) method for the dynamics of free boundaries. Journal of
Computational Physics 1981; 39:201–225.

7. Ubbink O. Numerical prediction of two �uid systems with sharp interfaces. Ph.D. Thesis, Imperial College of
Science, Technology and Medicine, London, 1997.

8. Greaves DM, Borthwick AGL. On the use of adaptive hierarchical meshes for numerical simulation of separated
�ows. International Journal for Numerical Methods in Fluids 1998; 26:303–322.

9. Wang JP, Borthwick AGL, Eatock Taylor R. Finite-volume-type VOF method on dynamically adaptive quadtree
grids. International Journal for Numerical Methods in Fluids 2004; 45(5):485–508.

10. Jeong JH, Yang DY. Finite element analysis of transient �uid �ow with free surface using VOF (volume of
�uid) method and adaptive grid. International Journal for Numerical Methods in Fluids 1998; 26:1127–1154.

11. Jeong JH, Yang DY. Three-dimensional �nite element analysis of transient �uid �ow with free surface using
marker surface method and adaptive grid re�nement. International Journal for Numerical Methods in Fluids
1999; 29:657–684.

12. Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries.
Journal of Computational Physics 2003; 190:572–600.

13. Patanker SV. Numerical Heat Transfer and Fluid Flow. Taylor and Francis, Hemisphere Publishing Corporation:
U.S.A., 1980.

14. Greaves DM. Simulation of interface and free surface �ows in a viscous �uid using adapting quadtree grids.
International Journal for Numerical Methods in Fluids 2004; 44:1093–1117.

15. Issa RI. Solution of the implicitly discretised �uid �ow equations by operator-splitting. Journal of Computational
Physics 1986; 62(1):40–65.

16. Ferziger JH, Peri�c M. Computational Methods for Fluid Dynamics. Springer: Berlin, Heidelberg, 1996 (ISBN
3-540-59434-5).

17. Rhie CM, Chow WL. A numerical study of the turbulent �ow past an isolated airfoil with trailing edge
separation. AIAA Journal 1983; 21:1525–1532.

18. Jasak H, Weller, HC, Issa RI, Gosman AD. High resolution NVD di�erencing scheme for arbitrarily unstructured
meshes. International Journal for Numerical Methods in Fluids 1999; 31(2):431–449.

19. Leonard BP. The ULTIMATE conservative di�erence scheme applied to unsteady one-dimensional advection.
Computational Methods in Applied Mechanics and Engineering 1991; 19:59–98.

20. Greaves DM, Borthwick AGL. Hierarchical tree-based �nite element mesh generation. International Journal
for Numerical Methods in Engineering 1999; 45:447–471.

21. Greaves DM. A quadtree adaptive method for simulating �uid �ows with moving interfaces. Journal of
Computational Physics 2004; 194=1:35–56.

22. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible �ow using the Navier–Stokes equations and
a multigrid method. Journal of Computational Physics 1982; 48:387–411.

23. Roache PJ. Perspective: a method for uniform reporting of grid re�nement studies. Journal of Fluids Engineering
(ASME) 1994; 116:405–413.

24. Qian L, Causon DM, Ingram DM, Mingham CG. An e�cient two-�uid solver for hydraulic �ow problems.
Journal of Hydraulic Engineering 2003; 129(9):688–696.

25. Andrillon Y, Alessandrini B. A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface
�ow. Journal of Marine Science Technology 2004; 8:159–168.

26. Martin JC, Moyce WJ. An experimental study of the collapse of liquid columns on a rigid horizontal plane.
Philosophical Transactions of the Royal Society of London, Series A 1952; 244:312–324.

27. Koshizuka S, Tamako H, Oka Y. A particle method for incompressible viscous �ow with �uid fragmentation.
Computational Fluid Mechanics Journal 1995; 113:134–147.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:693–711


